Respuesta :

Answer:

[tex]x = 3.7[/tex]

Step-by-step explanation:

We can find the side of the hypotenuse by applying pythagorean theorem.

[tex] {5}^{2} + {5}^{2} = {x}^{2} [/tex]

[tex]25 + 25 = {x}^{2} [/tex]

[tex]50 = {x}^{2} [/tex]

[tex]x = 5 \sqrt{2} [/tex]

Now we can apply pythagorean theorem on the other triangle

[tex](5 \sqrt{2} ) {}^{2} + {x}^{2} = {8}^{2} [/tex]

[tex]50 + {x}^{2} = 64[/tex]

[tex] {x}^{2} = 14[/tex]

[tex]x = \sqrt{14} [/tex]

[tex]x = 3.7[/tex]

Answer:

Step-by-step explanation:

use Pythagoras's   theorem  to find the hypontenuse of the isosceles triangle on the right side.

hyp = sqrt [ 5^2 + 5^2 ]

hyp = sqrt [ 50 ]

hyp = 7.0710678

now we know the adjacent side of the triangle on the left , since it's the same as the hypotenuse of the triangle on the right.

SOH CAH TOA ( to remember how the trig funct. fit on triangles)

CAH  Cos(Ф) = adj / hyp

cos(Ф) = 7.0710678 / 8

Ф = arcCos(  7.0710678 / 8 )

Ф = 27.8855668°

TOA  Tan(Ф) = x / 7.0710678

Tan( 27.8855668° ) =  x / 7.0710678

7.0710678 * Tan( 27.8855668° ) = x

3.741657 = x

x = 3.7  ( to the nearest 10th )