Answer:
D. [tex]y = 5\cdot \Sigma_{i=0}^{4} \left(\frac{1}{3} \right)^{i}[/tex]
Step-by-step explanation:
Let be [tex]y = \Sigma_{i = 0}^{4} \left[5\cdot \left(\frac{1}{3} \right)^{i}\right][/tex]. To find the equivalent expression we must use the following property:
[tex]y = c\cdot \Sigma_{i = 0}^{n} p(x) = \Sigma_{i=0}^{n} [c\cdot p(x)][/tex] (1)
Based on this fact, we find the following equivalence:
[tex]y = 5\cdot \Sigma_{i=0}^{4} \left(\frac{1}{3} \right)^{i}[/tex]
Hence, the correct answer is D.