Answer:
k = 3.41 N/m
Explanation:
The time period is given as:
[tex]T = \frac{time\ taken}{No.\ of\ oscillations} \\\\T = \frac{19\ s}{14} \\\\T = 1.36\ s[/tex]
Another formula for the time period of the spring-mass system is:
[tex]T = 2\pi\sqrt{\frac{m}{k}} \\\\(1.36\ s)^2 = 4\pi^2\frac{0.16\ kg}{k}\\\\k = \frac{(4\pi^2)(0.16\ kg)}{(1.36\ s)^2}\\\\[/tex]
k = 3.41 N/m