Respuesta :

Answer:

88 units

Step-by-step explanation:

[tex] In\: \triangle OBR \:\&\: \triangle OWN[/tex]

BR || WN (Given)

Therefore,

[tex] \angle OBR \cong \angle OWN[/tex] (Alternate angles)

[tex] \angle BOR \cong \angle WON[/tex] (Vertical angles)

[tex] \therefore \triangle OBR \sim \triangle OWN[/tex] (AA postulate)

[tex] \therefore \frac{OR}{ON} =\frac{BR}{WN} [/tex] (csst)

[tex] \therefore \frac{OR}{56} =\frac{24}{42} [/tex]

[tex] \therefore \frac{OR}{56} =\frac{4}{7} [/tex]

[tex] \therefore OR =\frac{4\times 56}{7} [/tex]

[tex] \therefore OR ={4\times 8} [/tex]

[tex] \therefore OR =32 [/tex]

RN = OR + ON

RN = 32 + 56

RN = 88 units