Answer:
y = 78.4286x1 + 7170.2361x2 - 236.2895x3 - 5663.3894x4 - 29470.2716
Goodness of fit = 0.8929
Predicted price = $251,281
Step-by-step explanation:
Selling price (Y) :
240800
215200
199200
182400
144800
126400
312000
185600
176800
162400
304000
256000
222400
159200
130400
Size (X1) :
3070
2660
2390
2240
1500
1440
3720
2520
2160
2140
3000
3000
2700
2020
1200
Room (x2) :
7
6
7
6
7
7
9
7
7
8
8
8
7
7
6
Age (X3) :
23
23
20
9
17
8
31
15
8
20
15
18
17
18
17
Attached garage (X4) :
1
1
1
0
0
0
1
1
0
1
1
1
1
0
0
Multiple regression model:
y = a1x1 + a2x2 + a3x3 + a4x4 + c
Where, a1, a2, a3, a4 are the Coefficients
c = intercept
The result of the multiple regression fit using a multiple regression calculator is :
y = 78.4286x1 + 7170.2361x2 - 236.2895x3 - 5663.3894x4 - 29470.2716
The cost of housing with an attached garage decreases by $5663.3894
Goodness of fit of the regression equation is 0.8929
Use the estimated equation to predict the sales price of a 3000-square-foot, 20-year-old home that has seven rooms but no attached garage.
Put values in the regression equation :
y = 78.4286(3000) + 7170.2361(7) - 236.2895(20) - 5663.3894(0) - 29470.2716
y = $251281.3911
Hence, predicted value is $251,281