Respuesta :

Answer:

h=15feet.

Step-by-step explanation:

using Pythagoras theorem

h²=p²+b²

  • h²=12²+9²
  • h²=144+81
  • h=√225
  • h=15feet.

hope it helps.

stay safe healthy and happy.

[tex]\huge\bold{To\:find:}[/tex]

The length of the hypotenuse.

[tex]\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}[/tex]

[tex]\sf\purple{The\:length\:of\:the\:hypotenuse \:"c"\:is\:15\:feet.}[/tex]

[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]

Using Pythagoras theorem, we have

[tex]( {perpendicular})^{2} + ( {base})^{2} = ( {hypotenuse})^{2} \\⇢  ({12 \: ft})^{2} + ( {9 \: ft})^{2} = {c}^{2} \\ ⇢ 144 \: {ft}^{2} + 81 \: {ft}^{2} = {c}^{2} \\ ⇢ 225 \: {ft}^{2} = {c}^{2} \\ ⇢  \sqrt{225 \: {ft}^{2} } = c \\ ⇢  \sqrt{15 \times 15 \: {ft}^{2} } = c \\ ⇢ 15 \: ft = c[/tex]

[tex]\sf\blue{Therefore,\:the\:length\:of\:the\:hypotenuse\:is\:15\:feet.}[/tex]

[tex]\huge\bold{To\:verify :}[/tex]

[tex]( {12 \: ft})^{2} + ( {9 \: ft})^{2} = ( {15 \: ft})^{2} \\⇝144 \: {ft}^{2} + 81 \: {ft}^{2} = 225 \: {ft}^{2} \\ ⇝225 \: {ft}^{2} = 225 \: {ft}^{2} \\ ⇝L.H.S.=R. H. S[/tex]

Hence verified.

[tex]\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘[/tex]

Ver imagen Аноним