Respuesta :
Answer:
[tex]\displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = 3x^\bigg{\frac{4}{3}} - \frac{3x^\bigg{\frac{2}{3}}}{2} + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx[/tex]
Step 2: Integrate
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = \int {4x^\bigg{\frac{1}{3}}} \, dx - \int {x^\bigg{\frac{-1}{3}}} \, dx[/tex]
- [1st Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = 4\int {x^\bigg{\frac{1}{3}}} \, dx - \int {x^\bigg{\frac{-1}{3}}} \, dx[/tex]
- [Integrals] Reverse Power Rule: [tex]\displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = 4 \bigg( \frac{3x^\bigg{\frac{4}{3}}}{4} \bigg) - \frac{3x^\bigg{\frac{2}{3}}}{2} + C[/tex]
- Simplify: [tex]\displaystyle \int { \Big( 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}} \Big) } \, dx = 3x^\bigg{\frac{4}{3}} - \frac{3x^\bigg{\frac{2}{3}}}{2} + C[/tex]
Step 3: Check
Differentiate the answer.
- Rewrite [Derivative Property - Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx} \bigg[ 3x^\bigg{\frac{4}{3}} \bigg] - \frac{d}{dx} \bigg[ \frac{3x^\bigg{\frac{2}{3}}}{2} \bigg] + \frac{d}{dx} \bigg[ C \bigg][/tex]
- Rewrite [Derivative Property - Multiplied Constant]: [tex]\displaystyle 3\frac{d}{dx} \bigg[ x^\bigg{\frac{4}{3}} \bigg] - \frac{3}{2}\frac{d}{dx} \bigg[ x^\bigg{\frac{2}{3}} \bigg] + \frac{d}{dx} \bigg[ C \bigg][/tex]
- Basic Power Rule: [tex]\displaystyle 3 \bigg( \frac{4}{3}x^\bigg{\frac{1}{3}} \bigg) - \frac{3}{2} \bigg( \frac{2}{3}x^\bigg{\frac{-1}{3}} \bigg)[/tex]
- Simplify: [tex]\displaystyle 4x^\bigg{\frac{1}{3}} - x^\bigg{\frac{-1}{3}}[/tex]
∴ we have found the answer.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e