You need to produce a set of cylindrical copper wire 3.5 m long that will have a

resistance of 0.125 Ω each. What will be the mass of each of these wires?

(ρ = 1.72X10-8 Ωm, density of copper = 8.9X103 kg/m3)​

Respuesta :

Solution :

We know, resistance is given by :

[tex]R = \dfrac{\rho l}{A}[/tex]

[tex]A = \dfrac{\rho l }{R}\\\\A = \dfrac{1.72\times 10^{-8} \times 3.5 }{0.125}\\\\A = 4.816 \times 10^{-7} \ m^2[/tex]

Now, we know mass of wire is given by :

[tex]Mass = Density \times Volume\\\\\M = 8.9 \times 10^3 \times 4.816 \times 10^{-7} \times 3.5 kg\\\\M = 0.01500\ kg\\\\M = 15.00\ gram[/tex]

Hence, this is the required solution.

The mass of the wire will be "15.00 g".

Given:

  • Length of wire, l = 3.5 m
  • Resistance, R = 0.125 Ω

The resistance will be:

→ [tex]R = \frac{\rho l}{A}[/tex]

or,

→ [tex]A = \frac{\rho l}{R}[/tex]

By substituting the values, we get

      [tex]= \frac{1.72\times 10^{-8}\times 3.5}{0.125}[/tex]

      [tex]= 4.816\times 10^{-7} \ m^2[/tex]

hence,

The mass will be:

→ [tex]Mass = Density\times Volume[/tex]

             [tex]= 8.9\times 10^3\times 4.816\times 10^{-7}\times 3.5[/tex]

             [tex]= 0.01500 \ kg[/tex]

             [tex]= 15.00 \ g[/tex]

Thus the above answer is right.  

Learn more about mass here:

https://brainly.com/question/17108656