Answer:
m = -4
Step-by-step explanation:
The given expression is :
[tex](17)^{3}\cdot(289)^{-6}=(17)^{2m-1}[/tex]
We need to find the value of m
We know that, 17² = 289
So,
[tex](17)^{3}\cdot(17^2)^{-6}=(17)^{2m-1}\\\\(17)^{3}\cdot(17)^{-12}=(17)^{2m-1}[/tex]
Also,[tex]x^ax^b=x^{a+b}[/tex]
So,
[tex]17^{3-12}=17^{2m-1}\\\\17^{-9}=17^{2m-1}\\\\\implies -9=2m-1\\\\-9+1=2m\\\\-8=2m\\\\m=-4[/tex]
So, the value of m is equal to -4.