Respuesta :
Answer:
A value of 6.0415 centimeters separates the bottom 7%, while a value of 6.2185 centimeters separates the top 7%.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 6.13 centimeters and a standard deviation of 0.06 centimeters.
This means that [tex]\mu = 6.13, \sigma = 0.06[/tex]
Value that separated the top 7%:
The 100 - 7 = 93rd percentile, which is X when Z has a p-value of 0.93, so X when Z = 1.475.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.475 = \frac{X - 6.13}{0.06}[/tex]
[tex]X - 6.13 = 1.475*0.06[/tex]
[tex]X = 6.2185[/tex]
Value that separates the bottom 7%:
The 7th percentile, which is X when Z has a p-value of 0.07, so X when Z = -1.475.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.475 = \frac{X - 6.13}{0.06}[/tex]
[tex]X - 6.13 = -1.475*0.06[/tex]
[tex]X = 6.0415[/tex]
A value of 6.0415 centimeters separates the bottom 7%, while a value of 6.2185 centimeters separates the top 7%.