Answer:
Step-by-step explanation:
I'm assuming you're looking for the age of the mammal hide, since there's no question here, but there's also nothing else to solve for. Remember a few things before we move on. First, if we are not told the initial amount with which we start, we have to assume that it's 100%. Second, remember that natural log and e are inverses of each other so they eliminate each other in application. Now to set up the problem. It looks like this:
[tex]71=100e^{-.0001t}[/tex] and begin by dividing both sides by 100 to get
[tex].71=e^{-.0001t}[/tex] and take the natural log of both sides. The other important thing to remember about the rules for logs and natural logs is that when you take the natural log of something, you are "allowed" to move the exponent down out front, which is why we do this. We cannot currently solve for t when it's stuck up there where it is right now. Taking the natural log allows us to bring that exponent down AND eliminate both the natural log and the e at the same time:
ln(.71) = -.0001t and we divide to solve for t:
[tex]\frac{ln(.71)}{-.0001}=t[/tex] and
[tex]\frac{-.3424903089}{-.0001}=t[/tex] so
t = 3424.9 years, or rounded, 3425 years.