SCALCET8 3.9.015. A street light is mounted at the top of a 15-ft-tall pole. A man 6 ft tall walks away from the pole with a speed of 4 ft/s along a straight path. How fast is the tip of his shadow moving when he is 35 ft from the pole

Respuesta :

Answer:

[tex]X=6.67ft/s[/tex]

Step-by-step explanation:

From the question we are told that:

Height of pole [tex]H_p=15[/tex]

Height  of man [tex]h_m=6ft[/tex]

Speed of Man [tex]\triangle a =4ft/s[/tex]

Distance from pole [tex]d=35ft[/tex]

Let

Distance from pole to man=a

Distance from man to shadow =b

Therefore

 [tex]\frac{a+b}{15}=\frac{b}{6}[/tex]

 [tex]6a+6b=15y[/tex]

 [tex]2a=3b[/tex]

Generally the equation for change in velocity is mathematically given by

 [tex]2(\triangle a)=3(\triangle b )[/tex]

 [tex]2*4=3(\triangle b)[/tex]

 [tex]\triangle a=\frac{8}{3}[/tex]

Since

The speed of the shadow is given as

 [tex]X=\triangle b+\triangle a[/tex]

 [tex]X=4+8/3[/tex]

 [tex]X=6.67ft/s[/tex]