Respuesta :
Answer:
Volume of paint required is 3.125 litres.
Step-by-step explanation:
It would be noted that each side walls would have the shape of a trapezium. So that the areas of each wall can be determined as:
wall 1 = [tex]\frac{1}{2}[/tex](a + b) h
= [tex]\frac{1}{2}[/tex](0.5 + 1.5)2
= 2 [tex]m^{2}[/tex]
wall 2 = [tex]\frac{1}{2}[/tex](a + b) h
= [tex]\frac{1}{2}[/tex](1 + 3)2
= 4 [tex]m^{2}[/tex]
wall 3 = [tex]\frac{1}{2}[/tex](a + b) h
= [tex]\frac{1}{2}[/tex](0.5 + 1.5)2
= 2 [tex]m^{2}[/tex]
wall 4 = [tex]\frac{1}{2}[/tex](a + b) h
= [tex]\frac{1}{2}[/tex](1 + 3)2
= 4 [tex]m^{2}[/tex]
Total area of the walls = 2 + 2 + 4 + 4
= 12 [tex]m^{2}[/tex]
Area of the bottom base = l x b
= 1 x 0.5
= 0.5 [tex]m^{2}[/tex]
Total area to be painted = 12 + 0.5
= 12.5 [tex]m^{2}[/tex]
But to paint one square meter of a gap surface, we need 0.25 litres of a green paint color. Thus, to paint 12.5 [tex]m^{2}[/tex] of the gap surface:
12.5 x 0.25 = 3.125
The litres of paint required is 3.125.