Respuesta :

Explanation:

[16]

[tex]\underline{\boxed{\large{\bf{Option \; A!! }}}} [/tex]

Here,

  • [tex]\rm { R_1} [/tex] = 2Ω
  • [tex]\rm { R_2} [/tex] = 2Ω
  • [tex]\rm { R_3} [/tex] = 2Ω
  • [tex]\rm { R_4} [/tex] = 2Ω

We have to find the equivalent resistance of the circuit.

Here, [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] are connected in series, so their combined resistance will be given by,

[tex]\longrightarrow \rm { R_{(1,2)} = R_1 + R_2} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = (2 + 2) \; Omega} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = 4 \; Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] is connected in parallel combination with [tex]\rm { R_3} [/tex], so their combined resistance will be given by,

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \dfrac{1}{R_{(1,2)}} + \dfrac{1}{R_3} } \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1}{4} + \dfrac{1}{2} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1 + 2}{4} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{3}{4} \Bigg ) \;\Omega} \\ [/tex]

Reciprocating both sides,

[tex]\longrightarrow \rm {R_{(1,2,3)}= \dfrac{4}{3} \;\Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex], [tex]\rm { R_2} [/tex] and [tex]\rm { R_3} [/tex] is connected in series combination with [tex]\rm { R_4} [/tex]. So, equivalent resistance will be given by,

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= R_{(1,2,3)} + R_4} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4}{3} + 2 \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4 + 6}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{10}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \bf {R_{(1,2,3,4)}= 3.33 \; \Omega} \\ [/tex]

Henceforth, Option A is correct.

_________________________________

[17]

[tex]\underline{\boxed{\large{\bf{Option \; B!! }}}} [/tex]

Here, we have to find the amount of flow of current in the circuit. By using ohm's law,

[tex] \longrightarrow [/tex] V = IR

[tex] \longrightarrow [/tex] 3 = I × 3.33

[tex] \longrightarrow [/tex] 3 ÷ 3.33 = I

[tex] \longrightarrow [/tex] 0.90 Ampere = I

Henceforth, Option B is correct.

____________________________

[tex] \tt \purple{Hope \; it \; helps \; you, Army! \heartsuit } \\ [/tex]

Ver imagen KimYurii