I suppose K is the matrix
[tex]K = \begin{bmatrix}14 & -13 & 0 \\ 3 & 8 & -1 \\ -10 & -2 & 5\end{bmatrix}[/tex]
To compute det(K), you can use a simple cofactor expansion along the first row:
[tex]\det(K) = 14\times\det\begin{bmatrix}8 & -1 \\-2 & 5\end{bmatrix} - (-13)\times\det\begin{bmatrix}3 & -1 \\ -10 & 5\end{bmatrix} + 0\times\det\begin{bmatrix}3 & 8 \\ -10 & -2\end{bmatrix} \\\\ \det(K) = 14\times(8\times5-(-1)\times(-2)) + 13\times(3\times5-(-1)\times(-10)) + 0 \\\\ \det(K) = 14\times38 + 13\times5 = \boxed{597}[/tex]