Answer:
Distance is [tex]\sqrt{290}[/tex] units
Step-by-step explanation:
Use the distance formula which is [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex] where [tex]d[/tex] is the distance between points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]
We are given that [tex](x_1,y_1)[/tex] is [tex](-6,-23)[/tex] and [tex](x_2,y_2)[/tex] is [tex](-23,-24)[/tex], therefore the distance between the two points is:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]d=\sqrt{(-23-(-6))^2+(-24-(-23))^2}[/tex]
[tex]d=\sqrt{(-23+6))^2+(-24+23))^2}[/tex]
[tex]d=\sqrt{(-17)^2+(-1)^2}[/tex]
[tex]d=\sqrt{289+1}[/tex]
[tex]d=\sqrt{290}[/tex]
Therefore, the distance between [tex](-6,-23)[/tex] and [tex](-23,-24)[/tex] is [tex]\sqrt{290}[/tex] units.