A 3kg object has an initial velocity (6i - 2j) m/s (a ) what is its kinetic energy at this time? (b) Find total work done on the object as its velocity changes to (8i+4j) m/s​?

Respuesta :

Answer:

[tex]K.E = \frac{1}{2} m {v}^{2} \\ {v}^{2}_i = {v}^{2} _x + {v}^{2} _y \\ = {(6)}^{2} + {( - 2)}^{2} = 36 + 4 = 40m. {s}^{ - 1} \\ K.E_i = \frac{1}{2} (3) (40) = 60J \\ \\ {v}^{2}_f = {v}^{2} _x + {v}^{2} _y \\ = {(8)}^{2} + {(4)}^{2} = 80m. {s}^{ - 1} \\ K.E_i = \frac{1}{2} (3) (80) = 120J \\ W_{net}=K.E_f-K.E_i \\ = 120J - 60J \\ = 60J[/tex]