The number of cookies and trays are illustrations of greatest common factors.
The given parameters are:
[tex]\mathbf{Chocolate\ chip=48}[/tex]
[tex]\mathbf{Rainbow=64}[/tex]
[tex]\mathbf{Oatmeal=120}[/tex]
(a) The number of trays
To do this, we simply calculate the greatest common factor of 48, 64 and 120
Factorize the numbers, as follows:
[tex]\mathbf{48 = 2 \times 2 \times 2 \times 2 \times 3}[/tex]
[tex]\mathbf{64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2}[/tex]
[tex]\mathbf{120 = 2 \times 2 \times 2 \times 3 \times 5}[/tex]
So, the GCF is:
[tex]\mathbf{GCF= 2 \times 2 \times 2}[/tex]
[tex]\mathbf{GCF= 8}[/tex]
Hence, the number of tray is 8
(b) The number of each type of cookie
We have
[tex]\mathbf{Chocolate\ chip=48}[/tex]
[tex]\mathbf{Rainbow=64}[/tex]
[tex]\mathbf{Oatmeal=120}[/tex]
Divide each cookie by the number of trays
So, we have:
[tex]\mathbf{Chocolate\ chip = \frac{48}{8} = 6}[/tex]
[tex]\mathbf{Rainbow = \frac{64}{8} = 8}[/tex]
[tex]\mathbf{Oatmeal = \frac{150}{8} = 15}[/tex]
Hence, 6 chocolate chips, 8 rainbows and 15 oatmeal cookies would fit each tray
Read more about greatest common factors at:
https://brainly.com/question/11221202