Respuesta :

Answer:

[tex]{ \tt{area = length \times width}} \\ { \tt{162 = 2w \times w}} \\ { \tt{162 = 2 {w}^{2} }} \\ { \tt{ {w}^{2} = 81}} \\ { \tt{w = 9}}[/tex]

  • width, w = 9 m
  • length, l = 2 × 9 = 18 m

[tex]{ \tt{perimeter = 2(l + w)}} \\ { \tt{p = 2(18 + 9)}} \\ { \tt{p = 2 \times 27}} \\ \\ { \underline{ \tt{ \: \: perimeter = 54 \: m \: \: }}}[/tex]

Answer:

54 m

Step-by-step explanation:

First, find the width

 162 = 2w × w

 162 = 2w²

 w² = 162 ÷ 2

 w = [tex] \sqrt{81}[/tex]

 w = 9 m

Second, find the length

 l = w × 2

 l = 9 × 2

 l = 18 m

Then, find the perimeter

 perimeter = 2(l + w)

 perimeter = 2(18 + 9)

 perimeter = 2(27)

 perimeter = 54 m