Respuesta :
Answer:
[tex]{ \tt{area = length \times width}} \\ { \tt{162 = 2w \times w}} \\ { \tt{162 = 2 {w}^{2} }} \\ { \tt{ {w}^{2} = 81}} \\ { \tt{w = 9}}[/tex]
- width, w = 9 m
- length, l = 2 × 9 = 18 m
[tex]{ \tt{perimeter = 2(l + w)}} \\ { \tt{p = 2(18 + 9)}} \\ { \tt{p = 2 \times 27}} \\ \\ { \underline{ \tt{ \: \: perimeter = 54 \: m \: \: }}}[/tex]
Answer:
54 m
Step-by-step explanation:
First, find the width
162 = 2w × w
162 = 2w²
w² = 162 ÷ 2
w = [tex] \sqrt{81}[/tex]
w = 9 m
┈
Second, find the length
l = w × 2
l = 9 × 2
l = 18 m
┈
Then, find the perimeter
perimeter = 2(l + w)
perimeter = 2(18 + 9)
perimeter = 2(27)
perimeter = 54 m