Respuesta :

Answer:

Step-by-step explanation:

=

±

2

4

2

x

=

b

±

b

2

4

a

c

2

a

x=2a−b±b2−4ac​​

Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.

2

2

+

1

0

=

0

x

2

2

x

+

10

=

0

x2−2x+10=0

=

1

a

=

1

a=1

=

2

b

=

2

b=−2

=

1

0

c

=

10

c=10

=

(

2

)

±

(

2

)

2

4

1

1

0

2

1

x

Answer:

C. x=1+3i, x=1-3i

Step-by-step explanation:

[tex]\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \:10}}{2\cdot \:1} \\=\frac{-\left(-2\right)\pm \:6i}{2\cdot \:1}\\x_1=\frac{-\left(-2\right)+6i}{2\cdot \:1},\:x_2=\frac{-\left(-2\right)-6i}{2\cdot \:1}\\\frac{-\left(-2\right)+6i}{2\cdot \:1}\\ =\frac{2+6i}{2\cdot \:1}\\=\frac{2+6i}{2}\\=\frac{2\left(1+3i\right)}{2}\\1+3i\\\\\\frac{-\left(-2\right)-6i}{2\cdot \:1}\\=\frac{2-6i}{2\cdot \:1}\\=\frac{2-6i}{2}\\=\frac{2\left(1-3i\right)}{2}\\1-3i\\x=1+3i,\:x=1-3i[/tex]