Respuesta :
Answer:
Step-by-step explanation:
=
−
±
2
−
4
√
2
x
=
−
b
±
b
2
−
4
a
c
2
a
x=2a−b±b2−4ac
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
2
−
2
+
1
0
=
0
x
2
−
2
x
+
10
=
0
x2−2x+10=0
=
1
a
=
1
a=1
=
−
2
b
=
−
2
b=−2
=
1
0
c
=
10
c=10
=
−
(
−
2
)
±
(
−
2
)
2
−
4
⋅
1
⋅
1
0
√
2
⋅
1
x
Answer:
C. x=1+3i, x=1-3i
Step-by-step explanation:
[tex]\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \:10}}{2\cdot \:1} \\=\frac{-\left(-2\right)\pm \:6i}{2\cdot \:1}\\x_1=\frac{-\left(-2\right)+6i}{2\cdot \:1},\:x_2=\frac{-\left(-2\right)-6i}{2\cdot \:1}\\\frac{-\left(-2\right)+6i}{2\cdot \:1}\\ =\frac{2+6i}{2\cdot \:1}\\=\frac{2+6i}{2}\\=\frac{2\left(1+3i\right)}{2}\\1+3i\\\\\\frac{-\left(-2\right)-6i}{2\cdot \:1}\\=\frac{2-6i}{2\cdot \:1}\\=\frac{2-6i}{2}\\=\frac{2\left(1-3i\right)}{2}\\1-3i\\x=1+3i,\:x=1-3i[/tex]