Seele
contestada

A 1 kg apple and a 2 kg baseball are 2 m apart. What is the force of gravity between each fruit?

Respuesta :

Answer:

[tex]\boxed {\boxed {\sf 3.335 \times 10^{-11} \ N}}[/tex]

Explanation:

We are asked to find the force of gravity between 2 objects. The following formula is used to calculate the attractive force of gravity:

[tex]F_g= \frac{Gm_1m_2}{r^2}[/tex]

G is the universal gravitational constant or 6.67 × 10⁻¹¹ N*m²/kg². 1 mass is 1 kilogram and the other mass is 2 kilograms. R is the distance between the 2 objects, or 2 meters.

  • G= 6.67 × 10⁻¹¹ N*m²/kg²
  • m₁ = 1 kg
  • m₂ = 2 kg
  • r= 2 m

Substitute the values into the formula.

[tex]F_g= \frac {(6.67 \times 10^{-11} \ N*m^2/kg^2)(1 \ kg)(2\ kg)}{( 2 \ m)^2}[/tex]

Multiply the numerator. The units of kilograms squared cancel.

[tex]F_g= \frac {(6.67 \times 10^{-11} \ N*m^2/kg^2)(2 kg^2)}{(2 \ m)^2}[/tex]

[tex]F_g= \frac {(6.67 \times 10^{-11} \ N*m^2)(2 )}{( 2 \ m)^2}[/tex]

[tex]F_g= \frac {(1.334 \times 10^{-10} \ N*m^2)}{ (2 \ m)^2}[/tex]

Solve the exponent in the denominator.

  • (2 m)²= 2 m*2m = 4 m²

[tex]F_g =\frac {(1.334 \times 10^{-10} \ N*m^2)}{ 4 \ m^2}[/tex]

The units of meters squared cancel.

[tex]F_g =\frac {(1.334 \times 10^{-10} \ N)}{ 4}[/tex]

[tex]F_g=3.335 \times 10^{-11} \ N[/tex]

The force of gravity between the fruit is 3.335 × 10⁺¹¹ Newtons.