Answer:
[tex]{ \tt{ {x}^{2} + {y}^{2} = 25 - - - \{eqn(a) \}}} \\ { \tt{y = {x}^{2} + 3 - - - \{eqn(b) \} }}[/tex]
» substitute y in eqn(a) with y in eqn(b)
[tex]{ \tt{ {x}^{2} + ( {x}^{2} + 3) {}^{2} = 25}} \\ { \tt{ {x}^{2} + ( {x}^{2} + 6x + 9) = 25}} \\ { \tt{2 {x}^{2} + 6x + 9 = 25 }} \\ { \tt{2 {x}^{2} + 6x - 16 = 0}} \\ { \tt{x = 1.7 \: \: and \: \: - 4.7}}[/tex]
» Find y in eqn(b)
[tex]{ \tt{y = {x}^{2} + 3 }} \\ { \tt{y = 5.89 \: \: and \: \: 25.09}}[/tex]