Respuesta :

Answer:

[tex]\left(\dfrac{11}{4},-\dfrac{57}{8}\right)[/tex]

Step-by-step explanation:

[tex]f(x) = 2x^2 - 11x +8[/tex]

Quickest way is to differentiate the function, equate it to 0, solve for x, then substitute value of x into original function to find y:

[tex]f'(x)=4x-11[/tex]

         [tex]f'(x)=0[/tex]

[tex]\implies 4x-11=0[/tex]

[tex]\implies x = \dfrac{11}{4}[/tex]

[tex]f(\frac{11}{4}) = 2(\frac{11}{4})^2 - 11(\frac{11}{4}) +8=-\dfrac{57}{8}[/tex]