Respuesta :

Answer:

Problem: They did not add -4 and -3 correctly.  The number under -4 and -3 should be -7

Synthetic division

Write the coefficients in the dividend's place and write the zero of the linear factor in the divisor's place:

1  |  -3   -4   5   7  

Bring the first coefficient down

1  |  -3   -4   5   7  

     -3

Multiply it with the divisor (-3 x 1) and write it below the next coefficient:

1  |  -3   -4   5   7  

            -3          

     -3

Add them (-4 + -3) and write the value below:

1  |  -3   -4   5   7  

           -3          

     -3   -7

Repeat.  Multiply -7 with the divisor, write it below the next coefficient:

1  |  -3   -4   5   7  

           -3   -7      

     -3   -7

Add:

1  |  -3   -4   5   7  

           -3   -7      

     -3   -7  -2

Repeat.  Multiply -2 with the divisor, write it below the next coefficient then add. The last term is the remainder

1  |  -3   -4   5   7  

           -3   -7  -2  

     -3   -7  -2 |  5 → R

Therefore, the solution is:

[tex]-3x^2- 7x - 2 + \dfrac{5}{x-1}[/tex]

Answer:

Step-by-step explanation:

Instead of 1, the divider should be -1

-1 ⊥  -3  -4  5  7

              3

                  7

                      5

_____________

        -3  -7 -2  2

So the quotient is  -3x^2 - 7x - 2 with a remainder of 5; or

-3x^2 - 7x - 2 + 5/(x-1)