Answer:
[tex]{\boxed{\sf{A = 490.63}}} \: \sf{yd}^{2} [/tex]
Step-by-step explanation:
In this question we have provided that the diameter of circle. So, finding the radius of circle :
[tex] \: \: \longrightarrow{\tt{R= \dfrac{D}{2}}}[/tex]
[tex] \: \: \longrightarrow{\tt{R= \dfrac{25}{2}}}[/tex]
[tex] \: \: \longrightarrow{\tt{R= \cancel{\dfrac{25}{2}}}}[/tex]
[tex] \: \: \longrightarrow{\tt{R= 12.5}}[/tex]
Hence, the radius of circle is 12.5 yd.
————————————————————————
Now, we know the radius of circle. Then, finding the area of circle by substituting the values in the formula :
[tex] \: \: \longrightarrow\tt{A = \pi{r}^{2}}[/tex]
[tex] \: \: \longrightarrow\tt{A = 3.14{(12.5)}^{2}}[/tex]
[tex] \: \: \longrightarrow\tt{A = 3.14{(12.5 \times 12.5)}}[/tex]
[tex] \: \: \longrightarrow\tt{A = 3.14{(156.25)}}[/tex]
[tex] \: \: \longrightarrow\tt{A = 3.14 \times 156.25}[/tex]
[tex] \: \: \longrightarrow\tt{A = 490.63}[/tex]
Hence, the area of circle is 490.63 yd².
[tex]\rule{200}{2.5}[/tex]