Respuesta :

Answer:

[tex]{\boxed{\sf{A = 490.63}}} \: \sf{yd}^{2} [/tex]

Step-by-step explanation:

In this question we have provided that the diameter of circle. So, finding the radius of circle :

[tex] \: \: \longrightarrow{\tt{R= \dfrac{D}{2}}}[/tex]

  • R = Radius
  • D = Diameter

[tex] \: \: \longrightarrow{\tt{R= \dfrac{25}{2}}}[/tex]

[tex] \: \: \longrightarrow{\tt{R= \cancel{\dfrac{25}{2}}}}[/tex]

[tex] \: \: \longrightarrow{\tt{R= 12.5}}[/tex]

Hence, the radius of circle is 12.5 yd.

————————————————————————

Now, we know the radius of circle. Then, finding the area of circle by substituting the values in the formula :

[tex] \: \: \longrightarrow\tt{A = \pi{r}^{2}}[/tex]

  • A = Area
  • π = 3.14
  • r = radius

[tex] \: \: \longrightarrow\tt{A = 3.14{(12.5)}^{2}}[/tex]

[tex] \: \: \longrightarrow\tt{A = 3.14{(12.5 \times 12.5)}}[/tex]

[tex] \: \: \longrightarrow\tt{A = 3.14{(156.25)}}[/tex]

[tex] \: \: \longrightarrow\tt{A = 3.14 \times 156.25}[/tex]

[tex] \: \: \longrightarrow\tt{A = 490.63}[/tex]

Hence, the area of circle is 490.63 yd².

[tex]\rule{200}{2.5}[/tex]