Respuesta :
- Length is x
- Width be x-3
[tex]\\ \rm\rightarrowtail Area=Length\times Width[/tex]
[tex]\\ \rm\rightarrowtail x(x-3)=378[/tex]
[tex]\\ \rm\rightarrowtail x^2-3x=378[/tex]
[tex]\\ \rm\rightarrowtail x^2-3x-378=0[/tex]
[tex]\\ \rm\rightarrowtail x^2-21x+18x-378=0[/tex]
[tex]\\ \rm\rightarrowtail (x+18)(x-21)=0[/tex]
[tex]\\ \rm\rightarrowtail x=-18,21[/tex]
Take it positive
- Length=21m
Let the length be x
Let the width be x-3
Now,
[tex] \red \dashrightarrow \mathcal{Area = Length×Breadth}[/tex]
- Area is given i.e. 378 m²
[tex] \red \dashrightarrow \sf \: 378 = x \times (x - 3)[/tex]
[tex] \red \dashrightarrow \sf \: 378 = {x}^{2} - 3x[/tex]
[tex] \red \dashrightarrow \sf \: 378 - {x}^{2} + 3x = 0[/tex]
[tex] \red \dashrightarrow \sf \: - 378 + {x}^{2} - 3x = 0[/tex]
[tex] \red \dashrightarrow \sf \: {x}^{2} - 3x - 378= 0[/tex]
[tex] \red \dashrightarrow \sf \: {x}^{2} + 18x - 21x - 378= 0[/tex]
[tex] \red \dashrightarrow \sf \: x \times (x + 18) - 21(x + 18)= 0[/tex]
[tex] \red \dashrightarrow \sf \: (x + 18) (x - 21)= 0[/tex]
[tex] \red \dashrightarrow \sf \: x + 18= 0 \\ \red \dashrightarrow \sf \: x - 21= 0[/tex]
[tex] \red \dashrightarrow \sf \: x = - 18 \\ \red \dashrightarrow \sf \: x = 21[/tex]
- Since the dimension cannot be in negative, We will consider x is 21
[tex] \colorbox{lightyellow}{length = x = 21}[/tex]
[tex] \colorbox{lightyellow}{breadth= x - 3= 21 - 3 = 18}[/tex]