Respuesta :
Answer:
Width: 11.5 inches; Length: 16.5 inches
Step-by-step explanation:
Let l=length and w=width
l=w+5
2(w+5)+2w=56
4w=46
w=11.5, l=16.5
Answer:
- Length = 16.5 inches
- Width = 11.5 inches
⠀
Step-by-step explanation :
⠀
As it is given that, the length of a rectangle is 5 in longer than its width and the perimeter of the rectangle is 56 in and we are to find the length and width of the rectangle. So,
⠀
Let us assume the width of the rectangle as x inches and therefore, the length will be (x + 5) inches .
⠀
Now, According to the Question :
⠀
[tex]{\longrightarrow \qquad { \pmb{\frak {2 ( Length + Breadth )= Perimeter_{(Rectangle)} }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{2 ( x + 5 + x )= 56 }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{2 ( 2x + 5 )= 56 }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{ 4x + 10= 56 }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{ 4x = 56 - 10}}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{ 4x = 46}}}}[/tex]
⠀
[tex]{\longrightarrow \qquad { {\sf{ x = \dfrac{46}{4} }}}}[/tex]
⠀
[tex]{\longrightarrow \qquad{ \underline{ \boxed { \pmb{\mathfrak {x = 11.5}} }}} }\: \: \bigstar[/tex]
⠀
Therefore,
- The width of the rectangle is 11.5 inches .
⠀
Now, We are to find the length of the rectangle:
[tex]{\longrightarrow \qquad{ { \frak{\pmb{Length = x + 5 }}}}}[/tex]
⠀
[tex]{\longrightarrow \qquad{ { \frak{\pmb{Length = 11.5 + 5 }}}}}[/tex]
⠀
[tex]{\longrightarrow \qquad{\underline{\boxed { \frak{\pmb{Length = 16.5}}}}}} \: \: \bigstar[/tex]
⠀
Therefore,
- The length of the rectangle is 16.5 inches .
⠀