Respuesta :
Answer:
Center: (2, -11)
Radius: 10
Step-by-step explanation:
(x - 2)² + (y + 11)² = 100
(x - h)² + (y - k)² = r²
-------------------------------
x - 2 = 0
+2 +2
x = 2
------------
y + 11 = 0
-11 -11
y = -11
------------------------------
r² = 100
r = √100
r = 10
----------------------------
Center: (h, k)
Radius: r
-------------------------------
Center: (2, -11)
Radius: 10
I hope this helps!
We are given the equation of circle (x - 2)² + (y + 11)² = 100 , but let's recall the standard equation of circle i.e (x - h)² + (y - k)² = r², where (h, k) is the centre of the circle and r being the radius ;
So, consider the equation of circle ;
[tex]{:\implies \quad \sf (x-2)^{2}+(y+11)^{2}=100}[/tex]
Can be further written as ;
[tex]{:\implies \quad \sf (x-2)^{2}+\{y-(-11)\}^{2}={10}^{2}}[/tex]
On comparing this equation with the standard equation of Circle, we will get, centre and radius as follows
- Centre = (2, -11)
- Radius = 10 units