Respuesta :

s1m1

Answer:

Step-by-step explanation:

The general formula for a horizontal hyperbola :

[tex]\frac{x^{2} }{a^{2} } -\frac{y^{2} }{b^{2} } =1[/tex]

Given: a = 1 we know a² = 1 ,and that c = 9 so we know c² = 9² = 81

We also know that the relation between a, b, c for a hyperbola is c²= a²+b²

c²= a²+b², substitute what we know

81 = 1 +b², subtract 1 from both sides of the equation

80 = b²

The equation of our hyperbola is:

[tex]\frac{x^{2} }{1 } -\frac{y^{2} }{80 } =1[/tex]  or  [tex]x^{2} -\frac{y^{2} }{80} =1[/tex]