Respuesta :
Answer:
- two solutions
x = 1, 3
Explanation:
[tex]\sf f(x)=x^2-4x+3[/tex]
[tex]\rightarrow \sf x^2-4x+3=0[/tex]
[tex]\rightarrow \sf x^2-3x-x+3=0[/tex]
[tex]\rightarrow \sf x(x-3)-1(x-3)=0[/tex]
[tex]\rightarrow \sf (x-1)(x-3)=0[/tex]
[tex]\rightarrow \sf x-1=0, \ x-3=0[/tex]
[tex]\rightarrow \sf x=1, \ x=3[/tex]
Thus, there are two solutions and the values are 1 and 3
Let's see
[tex]\\ \rm\rightarrowtail f(x)=0[/tex]
[tex]\\ \rm\rightarrowtail x^2-4x+3=0[/tex]
[tex]\\ \rm\rightarrowtail x^2-3x-x+3=0[/tex]
[tex]\\ \rm\rightarrowtail x(x-3)-1(x-3)=0[/tex]
[tex]\\ \rm\rightarrowtail (x-1)(x-3)=0[/tex]
[tex]\\ \rm\rightarrowtail x=1,3[/tex]