Respuesta :

Answer:

x=19, y=[tex]19\sqrt{3}[/tex]

Step-by-step explanation:

This triangle is a 30-60-90 triangle.

This means the hypotenuse (38) is double the short leg (x)

x=19

Then use the pythagorean theorem

a^2+b^2=c^2

19^2+y^2=38^2

361+y^2=1444

Subtract 361 from both sides

y^2=1083

put it in square roots and simplify

[tex]\sqrt{1083} =19\sqrt{3}[/tex]

y=[tex]19\sqrt{3}[/tex]

To solve this problem:

  ⇒ need to use a special right triangle theorem:

Let's consider the information given:

   ⇒ one angle is 30 degrees

      ⇒ one angle marked with a little square signifies that it is 90

          degrees

          ⇒ (all the angles added up are 180 degrees) so the last angle is                  

               60 degrees

Therefore we have a '30-60-90' triangle which states:

  • the side opposite the 30-degree angle

           ⇒ half the length of the hypotenuse (longest side of the triangle)

              ⇒ x = 38/2 = 19

  • the side adjacent to the 30-degree angle

          ⇒ is the square root of 3 divided by 2 of the hypotenuse

              ⇒ y = [tex]\frac{\sqrt{3} }{2} *38=19\sqrt{3}[/tex]

Therefore:

    x = 19

    y = [tex]19\sqrt{3}[/tex]

Hope that helps!

Ver imagen linandrew41