Respuesta :

Answer:

  • [tex]\Large\boxed{\sf{x=2}}[/tex]

Step-by-step explanation:

GIVEN:

In order to solve this, you need to isolate the term x on one side of the equation.

8x+21+16x=25x+19

First, combine like terms.

[tex]\Longrightarrow: \sf{8x+16x+21=25x+19}[/tex]

Solve.

8x+16x=24x

[tex]\Longrightarrow: \sf{24x+21=25x+19}[/tex]

You have to subtract by 21 from both sides.

[tex]\Longrightarrow: \sf{24x+21-21=25x+19-21}[/tex]

Solve.

[tex]\Longrightarrow: \sf{24x=25x-2}[/tex]

Subtract by 25x from both sides.

[tex]\Longrightarrow: \sf{24x-25x=25x-2-25x}[/tex]

Solve.

-x=-2

Then, you divide by -1 from both sides.

[tex]\Longrightarrow: \sf{\dfrac{-x}{-1}=\dfrac{-2}{-1}}[/tex]

Solve.

Divide the numbers from left to right.

[tex]\sf{\dfrac{-2}{-1}=2 }[/tex]

SOLUTIONS:

[tex]\Longrightarrow: \boxed{\sf{x=2}}[/tex]

  • Therefore, the correct answer is x=2.

I hope this helps. Let me know if you have any questions.

Answer:

[tex]x = 2[/tex]

Step-by-step explanation:

Given equation:

  • [tex]8x + 21 + 16x = 25x + 19[/tex]

Combine like terms on the L.H.S and simplify the expression as needed.

  • ⇒ [tex]8x + 21 + 16x = 25x + 19[/tex]
  • ⇒ [tex]x(8 + 16) + 21 = 25x + 19[/tex]
  • ⇒ [tex]x(24) + 21 = 25x + 19[/tex]
  • ⇒ [tex]24x + 21 = 25x + 19[/tex]

Now, rewrite 25x in such a way such that 24x can be repeated on both sides. Clearly, we can rewrite 25x as 24x + x. Then,

  • ⇒ [tex]24x + 21 = \underline{25x} + 19[/tex]
  • ⇒ [tex]24x + 21 = \underline{24x + x} + 19[/tex]

Since 24x is being repeated on both sides, we can cancel it.

  • ⇒ [tex]\bold{24x} + 21 = \bold{24x} + x + 19[/tex]
  • ⇒ [tex]21 = x + 19[/tex]

Finally, subtract 19 on both sides to isolate x.

  • ⇒ [tex]21 - 19 = x + 19 - 19[/tex]
  • ⇒ [tex]\boxed{2 = x}[/tex]

Therefore, the value of x is 2.

Learn more about one-variable equations: https://brainly.com/question/7783291