Each photon will give one electron, thereby the number of photons given each second are [tex]4.46\;\times\;10^{15}[/tex]. The power carried by the electrons is 0.255 mW.
A laser is a light-emitting device that enables the process of optical amplification to deduce electromagnetic radiations.
The given laser has a power output of 2.15 mW and a wavelength is 413 nm.
The energy of each photon emitted is given as:
[tex]E=h\nu=\dfrac{hc}{\lambda}=\rm \dfrac{(6.63 \;\times\; 10^{-34} m^2 kg s^{-1}) \;\times (3.0 \;\times\; 10^8 m s^{-1})}{413 \;\times\; 10^{-9} m}=4.81 \;\times\;10^{-19}[/tex]
The number of photons ejected at 2.15 mW is given as:
[tex]\rm \dfrac{2.15\;\times\;10^-^3\; J}{4.81\;\times\;10^-^1^9J}=4.46\;\times\;10^1^5 \;photons[/tex]
Each photon will give one electron, thereby the number of photons given each second are [tex]4.46\;\times\;10^{15}[/tex].
With the work function of 2.71 eV, the power carried by the electrons is given as:
[tex]KE_{e}=h\nu-\Phi=\rm 4.81\;\times\;10^{-19} J - 2.71 eV\;\times\; \dfrac{1.60 \;\times 10^{-19} J}{1 eV}=6.34 \;\times 10^{-20}[/tex]
The power carried by all the electrons ejected is given as:
[tex]P_{e}=\rm (4.02\;\times\;10^1^5 s^{-1}) \;\times\; (6.34 \;\times\; 10^{-20} J)=0.255 \;mW[/tex]
The power carried by the electrons is 0.255 mW.
Learn more about power, here:
https://brainly.com/question/59120
#SPJ4