Respuesta :

Answer:

D. 6x + 4 / x² + 5x

Step-by-step explanation:

Dividing a fraction is same as multiplying its inverse.

Therefore,

  • (3x + 2)/(4x) × 8/(x + 5)
  • (3x + 2)/x × 2/(x + 5)
  • 2(3x + 2)/x(x + 5)
  • 6x + 4 / x² + 5x
  • Option D

Answer:

[tex]\textsf{D.} \quad \dfrac{6x+4}{x^2+5}[/tex]

Step-by-step explanation:

When dividing fractions, multiply the first fraction by the reciprocal of the second fraction:

[tex]\begin{aligned}\left(\dfrac{3x+2}{4x}\right) \div \left(\dfrac{x+5}{8}\right) & =\left(\dfrac{3x+2}{4x}\right) \times \left(\dfrac{8}{x+5}\right)\\\\& = \dfrac{(3x+2) \times 8}{4x \times (x+5)}\\\\& = \dfrac{8(3x+2)}{4x(x+5)}\\\\& = \dfrac{2(3x+2)}{x(x+5)}\\\\& = \dfrac{6x+4}{x^2+5}\\\end{aligned}[/tex]