Respuesta :
Answer:
[tex]f(x) = \frac{x^{2} -5x-6}{x^{2} -4}[/tex]
Step-by-step explanation:
Let's factorize the 1st option :
⇒ [tex]f(x) = \frac{x^{2} -5x-6}{x^{2} -4}[/tex]
⇒ [tex]f(x) = \frac{x^{2}+x-6x-6 }{(x+2)(x-2)}[/tex]
⇒ [tex]f(x) = \frac{(x+1)(x-6)}{(x+2)(x-2)}[/tex]
===============================================================
Finding the zeros :
⇒ Factors of numerator should be equated to 0
- x + 1 = 0 ⇒ x = -1
- x - 6 = 0 ⇒ x = 6
=============================================================
Solution :
[tex]f(x) = \frac{x^{2} -5x-6}{x^{2} -4}[/tex]
Answer:
first option
Step-by-step explanation:
the zeros are determined by the numerator of the rational function.
given that the zeros are x = - 1 and x = 6 , then the corresponding factors are
(x + 1) and (x - 6) , that is
(x + 1)(x - 6) ← expand using FOIL
= x² - 5x - 6
the rational function is then
f(x) = [tex]\frac{x^2-5x-6}{x^2-4}[/tex]