Respuesta :
Given that
[tex]\displaystyle \lim_{x\to0} f(x) = 4[/tex]
we can use the properties of limits to show
[tex]\displaystyle \lim_{x\to0} \frac14 f(x)^4 = \frac14 \lim_{x\to0} f(x)^4 = \frac14 \left(\lim_{x\to0} f(x)\right)^4 = \frac14 \times 4^4 = 4^3 = \boxed{64}[/tex]
Let's see
[tex]\\ \rm\Rrightarrow \lim_{x\to 0}\dfrac{1}{4}f(x)^4[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{1}{4}\lim_{x\to 0}f(x)^4[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{1}{4}\times 4^4[/tex]
[tex]\\ \rm\Rrightarrow \dfrac{256}{4}[/tex]
[tex]\\ \rm\Rrightarrow 64[/tex]