What is the solution to the system of linear equations represented by the matrix below?
[2 4] [x] = [6]
[1 2] [y] [3]
A. x= 3 , y= 0
B. x= 0 , y= 3/2
C. The system of equations has no solution
D. The system of equations has infinite solutions

Respuesta :

Answer:

D. The system of equations has infinite solutions.

Step-by-step explanation:

Given system of equations,

[tex]\begin{bmatrix}2 & 4 \\ 1 & 2\end{bmatrix}.\begin{bmatrix}x\\ y\end{bmatrix}=\begin{bmatrix}6\\ 3\end{bmatrix}[/tex]

[tex]\implies \begin{bmatrix}2x+4y\\ x+2y\end{bmatrix}=\begin{bmatrix}6\\ 3\end{bmatrix}[/tex]

By comparing both sides,

We get,

2x + 4y = 6,

x + 2y = 3,

We know that a system [tex]a_1x+b_1y=c_1[/tex], [tex]a_2x+b_2y=c_2[/tex]

has a unique solution if,

[tex]\frac{a_1}{a_2}\neq \frac{b_1}{b_2}\neq \frac{c_1}{c_2}[/tex]

No solution, if,

[tex]\frac{a_1}{a_2}=\frac{b_1}{b_2}\neq \frac{c_1}{c_2}[/tex]

Infinitely many solution if,

[tex]\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}[/tex]

Here,

[tex]\frac{2}{1}=\frac{4}{2}=\frac{6}{3}=2[/tex]

Hence, the system of equation has infinite solutions.

Option D is correct.

Answer:

D ez tok test lol got right