Respuesta :
Answer:
The problem is with the arrangement of the ratios
PQ is the whole line but PR is a part of it only so you need QR to the ratio of PR
Answer:
[tex]\huge{\red{ R=\bigg(-1.5,\: 2\bigg)}}[/tex]
Step-by-step explanation:
- Coordinates of the extreme points of the segment are P(-4, -1) and Q (6, 11)
- [tex]\implies x_1= -4,\:y_1=-1,\:x_2=6,\:y_2=11[/tex]
- PQ = 4PR (Given)......(1)
- PQ = PR + RQ.....(2)
- -> 4PR = PR + RQ [From (1) and (2)]
- -> 4PR - PR = RQ
- -> 3PR = RQ
- -> PR/RQ = 1/3
- -> PR : RQ = 1 : 3
- This means point R divides segment PQ in the ratio 1 : 3.
- -> m : n = 1 : 3
- Now, coordinates of point R can be obtained by the section formula for internal division, which is given below:
- [tex]R=\bigg(\frac{mx_2+nx_1}{m+n},\:\frac{my_2+ny_1}{m+n}\bigg)[/tex]
- [tex]\implies R=\bigg(\frac{1(6)+3(-4)}{1+3},\:\frac{1(11)+3(-1)}{1+3}\bigg)[/tex]
- [tex]\implies R=\bigg(\frac{6-12}{4},\:\frac{11-3}{4}\bigg)[/tex]
- [tex]\implies R=\bigg(\frac{-6}{4},\:\frac{8}{4}\bigg)[/tex]
- [tex]\implies\huge{\red{ R=\bigg(-1.5,\: 2\bigg)}}[/tex]