Respuesta :

The value of x in the equation [tex]\frac{4x}{x - 1} - \frac{5x}{x -2} = \frac{2}{x^2 - 3x + 2}[/tex] is x = -1 or x = -2

How to solve the equation?

The equation is given as:

[tex]\frac{4x}{x - 1} - \frac{5x}{x -2} = \frac{2}{x^2 - 3x + 2}[/tex]

Start by taking the LCM

[tex]\frac{4x(x - 2) - 5x(x - 1)}{(x - 1)(x -2)} = \frac{2}{x^2 - 3x + 2}[/tex]

Expand the denominator

[tex]\frac{4x(x - 2) - 5x(x - 1)}{x^2 -3x +2} = \frac{2}{x^2 - 3x + 2}[/tex]

Cancel out the common factor

4x(x - 2) - 5x(x - 1)= 2

Expand

[tex]4x^2 - 8x - 5x^2 + 5x = 2[/tex]

Evaluate the like terms

[tex]-x^2 - 3x = 2[/tex]

Rewrite as:

[tex]x^2 + 3x + 2 = 0\\[/tex]

Expand

[tex]x^2 + 2x + x + 2 = 0[/tex]

Factorize

x(x + 2) + 1(x + 2) = 0

Factor out x + 2

(x + 1)(x + 2) = 0

Solve for x

x = -1 or x = -2

Hence, the value of x in the equation [tex]\frac{4x}{x - 1} - \frac{5x}{x -2} = \frac{2}{x^2 - 3x + 2}[/tex] is x = -1 or x = -2

Read more about rational equations at:

https://brainly.com/question/1851758

#SPJ1