Respuesta :
The value of x in the equation [tex]\frac{4x}{x - 1} - \frac{5x}{x -2} = \frac{2}{x^2 - 3x + 2}[/tex] is x = -1 or x = -2
How to solve the equation?
The equation is given as:
[tex]\frac{4x}{x - 1} - \frac{5x}{x -2} = \frac{2}{x^2 - 3x + 2}[/tex]
Start by taking the LCM
[tex]\frac{4x(x - 2) - 5x(x - 1)}{(x - 1)(x -2)} = \frac{2}{x^2 - 3x + 2}[/tex]
Expand the denominator
[tex]\frac{4x(x - 2) - 5x(x - 1)}{x^2 -3x +2} = \frac{2}{x^2 - 3x + 2}[/tex]
Cancel out the common factor
4x(x - 2) - 5x(x - 1)= 2
Expand
[tex]4x^2 - 8x - 5x^2 + 5x = 2[/tex]
Evaluate the like terms
[tex]-x^2 - 3x = 2[/tex]
Rewrite as:
[tex]x^2 + 3x + 2 = 0\\[/tex]
Expand
[tex]x^2 + 2x + x + 2 = 0[/tex]
Factorize
x(x + 2) + 1(x + 2) = 0
Factor out x + 2
(x + 1)(x + 2) = 0
Solve for x
x = -1 or x = -2
Hence, the value of x in the equation [tex]\frac{4x}{x - 1} - \frac{5x}{x -2} = \frac{2}{x^2 - 3x + 2}[/tex] is x = -1 or x = -2
Read more about rational equations at:
https://brainly.com/question/1851758
#SPJ1