Answer:
a. 1810mL
Explanation:
When conditions for a gas change under constant pressure (and the number of molecules doesn't change), it follows Charles' Law:
[tex]\dfrac{V_1}{T_1}=\dfrac{V_2}{T_2}[/tex] where the temperatures must be measured in Kelvin
To convert from Celsius to Kelvin, add 273, or use the equation: [tex]T_C+273=T_K[/tex]
For this problem, one must also recall that standard temperature is 0°C (or 273K).
So, [tex]T_1 = 273[K][/tex], and [tex]T_2 = (49.4+273)[K]=322.4[K][/tex].
[tex]\dfrac{V_1}{T_1}=\dfrac{V_2}{T_2}[/tex]
[tex]\dfrac{(1532.7[mL])}{(273[K])}=\dfrac{V_2}{(322.4[K])}[/tex]
[tex]\dfrac{(1532.7[mL])}{(273[K\!\!\!\!\!{-}])}(322.4[K\!\!\!\!\!{-}] )=\dfrac{V_2}{(322.4[K]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{----})}(322.4[K]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{----})[/tex]
[tex]1810.04571428[mL]=V_2[/tex]
Adjusting for significant figures, this gives [tex]V_2=1810[mL][/tex]