Respuesta :

Answer:

[tex]\frac{20}{(x+4)(x+6)}[/tex]

Step-by-step explanation:

assuming you require the expression simplified

[tex]\frac{x-4}{x+6}[/tex] - [tex]\frac{x-6}{x+4}[/tex]

multiply the numerator/denominator of the first fraction by (x + 4)

multiply the numerator/denominator of the second fraction by (x + 6)

= [tex]\frac{(x-4)(x+4)}{(x+4)(x+6)}[/tex] - [tex]\frac{(x-6)(x+6)}{(x+4)(x+6)}[/tex] ← expand and simplify numerators leaving the common denominator

= [tex]\frac{x^2-16-(x^2-36)}{(x+4)(x+6)}[/tex]

= [tex]\frac{x^2-16-x^2+36}{(x+4)(x+6)}[/tex]

= [tex]\frac{20}{(x+4)(x+6)}[/tex]