Answer:
[tex]\frac{20}{(x+4)(x+6)}[/tex]
Step-by-step explanation:
assuming you require the expression simplified
[tex]\frac{x-4}{x+6}[/tex] - [tex]\frac{x-6}{x+4}[/tex]
multiply the numerator/denominator of the first fraction by (x + 4)
multiply the numerator/denominator of the second fraction by (x + 6)
= [tex]\frac{(x-4)(x+4)}{(x+4)(x+6)}[/tex] - [tex]\frac{(x-6)(x+6)}{(x+4)(x+6)}[/tex] ← expand and simplify numerators leaving the common denominator
= [tex]\frac{x^2-16-(x^2-36)}{(x+4)(x+6)}[/tex]
= [tex]\frac{x^2-16-x^2+36}{(x+4)(x+6)}[/tex]
= [tex]\frac{20}{(x+4)(x+6)}[/tex]