Respuesta :
[tex]\bf m\cdot m\cdot m\cdot m\cdot p\cdot p\cdot p\cdot p\cdot p\cdot p
\\ \quad \\
m^1\cdot m^1\cdot m^1\cdot m^1\cdot p^1\cdot p^1\cdot p^1\cdot p^1\cdot p^1\cdot p^1
\\ \quad \\
m^{1+1+1}p^{1+1+1+1+1+1}\implies m^{\boxed{?}}p^{\boxed{?}}[/tex]
(m*m*m)*(p*p*p*p*p*p) is (m^1*m^1*m^1)*(p^1*p^1*p^1*p^1*p^1*p^1) so what I'm trying to say is m equals 1+1+1 and p equals 1+1+1+1+1+1.