Respuesta :

So, making x subject of the formula, x = [m - 2pt³ ±√(m²  - 4pt²m)]/{2t⁵}

How to make x subject of the formula?

Since p = √(mx/t) - t²x

So, p + t²x = √(mx/t)

Squaring both sides, we have

(p + t²x)² = [√(mx/t)]²

p² + 2pt²x + t⁴x² = mx/t

Multiplying through by t,we have

(p² + 2pt²x + t⁴x²)t = mx/t × t

p²t + 2pt³x + t⁵x² = mx

p²t + 2pt³x + t⁵x² - mx = 0

t⁵x² + 2pt³x - mx + p²t = 0

t⁵x² + (2pt³ - m)x + p²t = 0

Using the quadratic formula, we find x.

[tex]x = \frac{-b +/-\sqrt{b^{2} - 4ac} }{2a}[/tex]

where

  • a = t⁵,
  • b = (2pt³ - m) and
  • c =  p²t

Substituting the values of the variables into the equation, we have

[tex]x = \frac{-(2pt^{3} - m) +/-\sqrt{(2pt^{3} - m)^{2} - 4(t^{5})(p^{2}t) } }{2t^{5} }\\= \frac{-(2pt^{3} - m) +/-\sqrt{4p^{2} t^{6} - 4pt^{2}m + m^{2} - 4p^{2}t^{6} } }{2t^{5}}\\= \frac{-(2pt^{3} - m) +/-\sqrt{m^{2} - 4pt^{2}m } }{2t^{5}}\\= \frac{m - 2pt^{3} +/-\sqrt{m^{2} - 4pt^{2}m } }{2t^{5}}[/tex]

So, making x subject of the formula,  [tex]x = \frac{m - 2pt^{3} +/-\sqrt{m^{2} - 4pt^{2}m } }{2t^{5}}[/tex]

Learn more about subject of formula here:

https://brainly.com/question/25334090

#SPJ1