The given trigonometric function consists of trigonometric values of common angles.
The values that represent the solution to [tex]cos(\frac{\pi }{4} -x)=\frac{\sqrt{2} }{2} .sinx[/tex], x ∈ [0, 2·π) are; [tex]x=({\frac{\pi }{2} or \frac{3.\pi }{2} )[/tex].
The given function is: [tex]cos(\frac{\pi }{4} -x)=\frac{\sqrt{2} }{2} .sinx[/tex]
Where; x ∈ [0, 2·π).
We have; cos(A - B) = cos(A)·cos(B) - sin(A)·sin(B).
Which gives:
So, we obtain:
[tex]\frac{\sqrt{2} }{2} .cosx=\frac{\sqrt{2} }{2}.sinx-\frac{\sqrt{2} }{2} .sinx=0\\cosx=0\\cos\frac{\pi }{2} =0[/tex]
Therefore, the possible solutions (x-values) to cos x = 0 are:
[tex]0[/tex] ≤ [tex]\frac{n.\pi }{2}[/tex] ≤ [tex]2.\pi[/tex]
Where, n = 1, 3, 5, .., x ∈ [0, 2·π)
We get: [tex]x=({\frac{\pi }{2} or \frac{3.\pi }{2} )[/tex].
Know more about trignometric funcions here:
https://brainly.com/question/24349828
#SPJ4