Respuesta :
Answer:
[tex]x=\frac{1}{r} +1[/tex]
Step-by-step explanation:
[tex]r=\frac{1}{x-1}[/tex]
[tex]r(x-1)=1[/tex]
[tex]x-1=\frac{1}{r}[/tex]
[tex]x=\frac{1}{r} +1[/tex]
Answer:
[tex]x=\dfrac{1+r}{r}[/tex]
Step-by-step explanation:
Given equation:
[tex]r=\dfrac{1}{(x-1)}[/tex]
Multiply both sides by (x - 1):
[tex]\implies r(x-1)=\dfrac{1}{(x-1)} \cdot (x-1)[/tex]
[tex]\implies r(x-1)=1[/tex]
Expand the brackets:
[tex]\implies rx-r=1[/tex]
Add r to both sides:
[tex]\implies rx-r+r=1+r[/tex]
[tex]\implies rx=1+r[/tex]
Divide both sides by r:
[tex]\implies \dfrac{rx}{r}=\dfrac{1+r}{r}[/tex]
[tex]\implies x=\dfrac{1+r}{r}[/tex]