Solve the equation r = 1/(x-1) for x in terms of r. In other words, manipulate the equation until you have x equal to an expression with r's in it but no x's.

Respuesta :

Answer:

[tex]x=\frac{1}{r} +1[/tex]

Step-by-step explanation:

[tex]r=\frac{1}{x-1}[/tex]
[tex]r(x-1)=1[/tex]
[tex]x-1=\frac{1}{r}[/tex]
[tex]x=\frac{1}{r} +1[/tex]

Answer:

[tex]x=\dfrac{1+r}{r}[/tex]

Step-by-step explanation:

Given equation:

[tex]r=\dfrac{1}{(x-1)}[/tex]

Multiply both sides by (x - 1):

[tex]\implies r(x-1)=\dfrac{1}{(x-1)} \cdot (x-1)[/tex]

[tex]\implies r(x-1)=1[/tex]

Expand the brackets:

[tex]\implies rx-r=1[/tex]

Add r to both sides:

[tex]\implies rx-r+r=1+r[/tex]

[tex]\implies rx=1+r[/tex]

Divide both sides by r:

[tex]\implies \dfrac{rx}{r}=\dfrac{1+r}{r}[/tex]

[tex]\implies x=\dfrac{1+r}{r}[/tex]