[tex]\stackrel{\textit{\LARGE Line A}}{(\stackrel{x_1}{-8}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{-5}~,~\stackrel{y_2}{4})} ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{4}-\stackrel{y1}{5}}}{\underset{run} {\underset{x_2}{-5}-\underset{x_1}{(-8)}}} \implies \cfrac{4 -5}{-5 +8}\implies -\cfrac{1}{3} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\stackrel{\textit{\LARGE Line B}}{(\stackrel{x_1}{0}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{-1})} ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-1}-\stackrel{y1}{1}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{0}}} \implies \cfrac{-1 -1}{4 +0}\implies -\cfrac{1}{2}[/tex]
keeping in mind that perpendicular lines have negative reciprocal slopes, and that parallel lines have equal slopes, well, those two slopes above aren't either, so since they're neither, and they're different, that means that lines A and B intersect.