Respuesta :

Given

vertices of quadrilateral STUV are located at

S(-9, 14), T(1, 10), U(-3, 0), and V(-13, 4).

Find

Slope of each sides , length of each sides and midpoints of diagonals

Explanation

Slope of line is given by

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

so ,

slope of line ST =

[tex]\frac{10-14}{1-(-9)}=-\frac{4}{10}=-\frac{2}{5}[/tex]

slope of line UV =

[tex]\frac{4-0}{-13-(-3)}=\frac{4}{-10}=-\frac{2}{5}[/tex]

slope of line TU =

[tex]\frac{0-10}{-3-1}=-\frac{10}{-4}=\frac{5}{2}[/tex]

slope of line SV =

[tex]\frac{4-14}{-13-(-9)}=-\frac{10}{-4}=\frac{5}{2}[/tex]

length of each side

ST =

[tex][/tex]

UV =

TU =

SV =