SOLUTION
Step1: Write out the giving equation
[tex]7-4x=7y[/tex]Step2: Write out the equation in form of y=mx+c
[tex]\begin{gathered} 7-4x=7y \\ 7y=-4x+7 \\ \text{ Divide both sides by 7} \\ y=-\frac{4}{7}x+1 \end{gathered}[/tex]Then the gradient of the equation is the coefficient of x
[tex]\text{ gradient, m=-}\frac{4}{7}[/tex]Two lines are parallel if their gradient is the same
Hence the second line will have a gradient of
[tex]m_2=-\frac{4}{7}[/tex]Step4: Apply the slope and one point form to find the gradient of the line parallel to 7-4x=7y
[tex]\begin{gathered} y-y_1=m_2(x-x_1) \\ \text{where the point given is (2,0)} \\ y_1=0,x_1=2 \end{gathered}[/tex]The substitute the parameters into the formula
[tex]\begin{gathered} y-0=-\frac{4}{7}(x-2) \\ y=-\frac{4}{7}x+\frac{8}{7} \end{gathered}[/tex]Therefore the equation of the line is y = -4/7x+8/7
The right option is C