Given:
Given that a graph of
[tex]2x=6y+8[/tex]And
[tex]\begin{gathered} m=3 \\ y-int=4 \end{gathered}[/tex]Required:
To find the error in the given statement.
Explanation:
Slope-intercept form is
[tex]y=mx+b[/tex]where m is the slope and b is the y-intercept.
Consider the given equation
[tex]2x=6y+8[/tex]Here the slope intercept form is,
[tex]\begin{gathered} 2x=6y+8 \\ 6y=2x-8 \\ y=\frac{2x}{6}-\frac{8}{6} \\ y=\frac{x}{3}-\frac{4}{3} \end{gathered}[/tex]Now the slope is,
[tex]m=\frac{1}{3}[/tex]And y-intercept is,
[tex]y-int=-\frac{4}{3}[/tex]The correct graph is,
Final Answer:
The error is,
Intercept form:
[tex]\begin{gathered} x=3y+4 \\ m=3 \\ y-int=4 \end{gathered}[/tex]