Answer:
The given values in the question are
[tex]\begin{gathered} Volume=600ml \\ time=820\text{ minutes} \end{gathered}[/tex]Step 1:
Convert the time from minutes to hours
[tex]\begin{gathered} 60\text{ minutes = 1hour} \\ 820\text{ minutes = x hours} \\ cross\text{ multiply, we will have} \\ 60\times x=820\times1 \\ \frac{60x}{60}=\frac{820}{60} \\ x=\frac{41}{3}hrs \end{gathered}[/tex]Step 2:
Calculate the rate at which the IV is use in ml/hr using the formula below
[tex]rate(\frac{ml}{hr})=\frac{volume(ml)}{time(hr)}[/tex]By substituting the values, we will have
[tex]\begin{gathered} rate(\frac{ml}{hr})=\frac{volume(ml)}{t\imaginaryI me(hr)} \\ rate(\frac{ml}{hr})=\frac{600ml}{\frac{41}{3}hrs} \\ rate(\frac{ml}{hr})=600ml\div\frac{41}{3}hrs \\ rate(\frac{ml}{hr})=600ml\times\frac{3}{41} \\ rate(\frac{ml}{hr})=\frac{1800ml}{41hrs} \\ rate(\frac{ml}{hr})=43.90\text{ }\frac{ml}{hr} \end{gathered}[/tex]Hence,
The final answer = 43.90 ml/hr